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Abstract

Research in the area of direct simulation is strongly motivated by the potential to improve the
characterization of natural phenomena. This promises to avoid the need for transformation,
while permitting the integration of multiscale information and the construction of property
models directly onto realistic, complex grids. While most of the research energies in this
area have been directed towards univariate modeling, the significant potential of multivariate
modeling is key to the practicality of direct simulation.

Numerous methodologies have been proposed to infer the shape of the univariate condi-
tional distributions, on which Monte Carlo simulation is performed; however, inference of
the multivariate distribution remains a longstanding challenge not only in geostatistics but
statistics in general. To address this issue, we can draw on the experience from the eco-
nomic and financial industries, where the use of copulas theory has been actively explored
in the last 50 years to address this problem specifically. A copulas function is a multivariate
function constructed with the express purpose of accessing the shape of the multivariate dis-
tribution, given knowledge of the univariate marginal distributions. This paper explores the
background and theory of copulas functions, and presents a methodology to construct a copu-
las function. A framework for application in direct sequential cosimulation for geostatistical
modeling is finally presented.

1 Introduction

The simulation of multiple variables has wide application in various industries and research
domains. Traditional methods of simulation assume that the variables either come from a
multiGaussian (MG) distribution, or can be properly transformed to obtain a MG distribu-
tion. Useful transformations in this regard include the stepwise conditional transformation
[6], alternating conditional expectation (ACE) [1], principal components analysis (PCA),
etc. In many cases, this may be achieved using one or a combination of the previous trans-
forms; however, in most cases, conforming to the MG assumption is unsuitable and difficult
to achieve. Nevertheless, the MG assumption presents a greatly simplified simulation ap-
proach since the multivariate distribution is fully defined based on very limited information:
the mean vector and variance-covariance matrix.
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Greater flexibility in multivariate simulation warrants consideration of a non-Gaussian
approach. This is not without it’s own challenges, the biggest of which is the inference of the
multivariate distribution. Direct simulation allows for modeling without the need for data
transformation. Soares and Deutsch have presented methodologies to access the univariate
conditional distributions. Soares further extended this result for collocated cosimulation of
multiple variables; the use of collocated cokriging and hence adoption of the Markov screen-
ing assumption has the inherent result of assuming a bivariate (or multivariate) Gaussian
distribution.

The motivation for this paper is to address the issue of inferring the shape of the multi-
variate distribution, that will permit a true departure from the MG framework. One of the
important keys to this problem may lie in the theory of copulas. Sklar (1959) first developed
the term copulas for a multivariate distribution with marginal distribution as uniform [0,1].
Since then, research in this area has rapidly developed and played an important role in the
study of multivariate distributions, particularly for non-MG cases. This has been especially
relevant and applicable to the financial and insurance industries over the last few decades.
This paper first gives an overall brief introduction on copulas, followed by an application
of the copulas to estimate the multivariate distribution of several analytical and real data
distributions. A discussion on and framework for implementation into direct sequential
cosimulation is also provided.

2 Background on Copulas Theory

Consider the case of two continuous random variables (RV), X and Y , with cumulative
distribution functions (cdf) given by FX(x) and FY (y), respectively. Let U = FX(x), then
U is a uniformly distributed RV on the unit interval I = [0, 1]; similarly, let V = FY (y),
then V is also uniformly distributed on the interval I = [0, 1]. Working within the unit
space of U and V (or equivalently the probability space of X and Y ), we can apply the
copulas function to describe and model the bivariate distribution (see Figure 1).

Sklar (1959) and Schweizer and Sklar (1974) give a definition for a two-dimensional
(bivariate) copula as a function C : I2 → I, such that:

1. For every u, v ∈ I, C(u, 0) = C(0, v) = 0, C(u, 1) = u and C(1, v) = v

2. For every u1, u2, v1, v2 ∈ I such that u1 ≤ u2, v1 ≤ v2:

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0
C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1) (1)

Figure 2 shows a schematic illustration of the above conditions for the copulas function. One
can consider the copulas function as a multivariate cdf expressed as a function of probability
units, not the data units as would be expected of a conventional multivariate cdf.

The above bivariate conditions can be extended to the more general n-variate definition
[15]. An n-dimensional copula C is a function C : In → I with the following properties:

1. For all u = {u1, . . . , un} ∈ In, C(u) = 0 if at least one coordinate ui = 0, i = 1, . . . , n.
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Figure 1: Schematic illustration of the relation between U = FX(x), V = FY (y), FXY (x, y) and
CUV (u, v).
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Figure 2: Schematic illustration of the definition of the copulas function CUV (u, v).

2. If all coordinates of u equals 1.0 except ui, i = 1, . . . , n, then C(u) = ui, i = 1, . . . , n.

3. For all ui, i = 1, . . . , n in n−increasing: The C−volume of all hypercubes with vertices
in In is positive, that is

2∑
i1=1

...
2∑

in=1

(−1)i1+i2+...+inC(u1,i1 , ..., un,in) ≥ 0

for all (u1,1, ..., un,1) and (u1,2, ..., un,2) in In such that uj,1 ≤ uj,2,∀j ∈ {1, 2, ..., n}.
This is equivalent to the condition expressed in Equation 1 in the bivariate case above.

Essentially, the copulas function is a multivariate distribution function that represents
the dependence structure of the joint cdf of X1, . . . ,Xn, denoted as FX1,...,Xn , with marginal
cdfs FX1 , . . . , FXn:

FX1,...,Xn(x1, . . . , xn) = C(FX1(x1), . . . , FXn(xn))
= C(u1, . . . , un) (2)

Of course, one could rewrite Equation 2 as

C(u1, . . . , un) = FX1,...,Xn(F−1
X1

(u1), . . . , F−1
Xn

(un))

In fact, if all marginal cdfs FX1 , . . . , FXn are continuous, then C(FX1(x1), . . . , FXn(xn))
is unique [21]. Otherwise, C(FX1(x1), . . . , FXn(xn)) is uniquely determined on Range(F1)×
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Range(F2)× ...×Range(Fn). Conversely, If C is an n-copula function and FX1 , . . . , FXn are
marginal cdfs, then FX1,...,Xn(x1, . . . , xn) defined by the above equation is an n−dimensional
distribution function (joint cdf) with margins F1, F2, ..., Fn. This is known as Sklar’s The-
orem, which was established and proved by Sklar [18]; the corresponding theorem for the
n−dimensional case was proved by Moore and Spruil [11], Deheuvels [2] and Sklar [19].

Based on Sklar’s theorem, we can estimate a multivariate distribution FX1,...,Xn(x1, . . . , xn)
by first estimating the marginal distribution for each variable, FX1(x1), . . . , FXn(xn), and
then apply the copulas function to estimate the multivariate distribution. Directly from
Sklar’s theorem, the joint probability density function (pdf) for FX1,...,Xn(x1, . . . , xn) can
be expressed as follows:

fX1,...,Xn(x1, . . . , xn) = c(FX1(x1), . . . , FXn(xn)) ·
n∏

j=1

fXj(xj)

where c is the density function for copulas C and fXi(xi) is the marginal density function
for the ith variable, i = 1, . . . , n.

2.1 Classes and Families of Copulas

Not all copulas are created equal; in fact, there are various classes of copulas, each with
specific definition and properties, and certain attributes related to and/or suitable for de-
scribing certain distributions. Following the taxonomic hierarchy for related groupings,
classes denote a higher/larger grouping, within which one can find a family of lower/smaller
groupings. In this fashion, the following important classes of copulas are identified, and cer-
tain typical families within these classes are discussed. Specifically, the class of elliptical,
Archimedean, and Marshall and Olkin’s copulas are discussed [22].

2.1.1 Elliptical Copulas

As the name suggests, this class of copulas apply for elliptical distribution, which include
the normal or Gaussian distribution, Student’s t distribution and Laplace distribution [14].
The first two distributions present the most important families within this class. The
Gaussian copula applies for the MG distribution, wherein the joint and all lower-dimensional
distributions are Gaussian. The copulas function is given as

C(u1, u2, ...un) = GX1,...,Xn [G−1
X1

(u1), . . . , G−1
Xn

(un)]

where G(·) is the standard normal cdf.
Similarly, the Student’s t Copula corresponds to Student’s t distribution and is given

by

C(u1, u2, ...un) = tν,X1,...,Xn [t−1
ν,X1

(u1), . . . , t−1
ν,Xn

(un)]

where tν,Xi(·) represents the standard multivariate Student’s t distribution with ν degrees
of freedom for the ith variable.
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2.1.2 Archimedean Copulas

In practice, we are often confronted with non-elliptical distributions; in these cases, we need
a more extensive/flexible approach to estimate and model the multivariate distributions.
Archemidean Copulas is one important class which meets this goal.

In a bivariate distribution, an Archemidean Copula, usually denoted as Cφ is a function
given by

Cφ(u, v) = φ−1[φ(u) + φ(v)]

where u, v ∈ (0, 1], and φ(.) is called the generator, that is a continuous, convex and strictly
decreasing function defined on interval [0,1] with range [0,+∞) such that φ(1) = 0 [12].
This can be extended to the multivariate case [21]:

C(u1, u2, ..., un) = φ−1[φ(u1) + φ(u2) + ... + φ(un)]

This class of copulas is attractive for a number reasons. Firstly, different generators
can be adopted to suit the characteristics of different distributions. For this reason, there
are a large number of families designed to fit wide range of bivariate and multivariate
distributions. In fact, Nelsen (1999) lists 22 families under the Archimedean copulas [12]
Secondly, this is a parametric copulas which can be used to infer the bivariate or multivariate
distributions.

Some of the families that fall under the Archimedean class include (Frees and Valdes
1998):

� Clayton’s family: In this case, φ(t) = t−α − 1, with α > 1 and t ∈ [0, 1], which yields
the copulas function Cφ = (u−α+v−α−1)−

1
α . This family has a lower tail dependence.

� Gumbel’s family: For this family, φ(t) = (− ln t)α, with α ≥ 1 and t ∈ [0, 1], and the
corresponding copulas is Cφ = exp{−[(− ln u)α +(− ln v)α]

1
α }. This yields an extreme

value copulas function with upper tail dependence. As a special case, when α = 1,
φ(t) = − ln(t), and Cφ = uv = C⊥, and effectively represents independence between
u and v.

� Frank’s family: Consider φ(t) = ln eαt−1
eα−1 , α ∈ (−∞,+∞), α �= 0 and t ∈ [0, 1]. This

yields the copulas function Cφ = − 1
α ln[1 + (e−αu−1)(e−αu−1)

e−α−1 ].

2.1.3 Marshall-Olkin’s Copulas

Another class of copula which is closely related to Archemidean class is called Marshall and
Olkin’ copula [8, 9, 10]. The link between Marshall-Olkin’s copulas and the Archimedean
copulas lies in the Laplace transformation. If the inverse Laplace transform of the genera-
tor, φ(t), is taken, then the Archimedean copulas takes on the form of the Marshall-Olkin
copulas. In fact the generators for Clayton’s, Gumbel’s and Frank’s family (as discussed
above) are all inverses of the Laplace transformation from certain distributions. Specifi-
cally, Clayton’s family is from Gamma distribution, Gumbel’s family is from Positive stable
distribution, while Frank’s family is from the Logarithmic series distribution on positive
integers.
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Marshall-Olkin copulas have been used as a survival copulas, wherein a system (com-
prised of multiple components) is subjected to shocks which may cause failure of one or
more components. The idea is then to generate a copulas that characterizes the failure of
this system [12].

2.2 Fitting and Simulation of Copulas

There are several approaches to fitting and modeling the copulas function. In general,
two processes must be performed: (1) estimate the marginal distribution of each variable,
and (2) estimate the copulas of the joint distribution. These two steps can be carried out
simultaneously or they can be performed sequentially. Both parametric and non-parametric
approaches are addressed below.

2.2.1 Parametric Approach

With the aid of parametric assumptions, this group of modeling approaches capitalizes on
some elegant analytical forms for model fitting. The first approach is based on a Maxi-
mum Likelihood Estimator (MLE) while the second method takes the form of a Canonical
Maximum Likelihood (CML).

Maximum Likelihood Estimator (MLE). Let us assume that each variable has a
known parametric distribution, say Fi(xi;ϑi), i = 1, . . . , n, where ϑi is the parameter vector
for the ith margin. Further, assume we know a parametric copulas function for the variable,
for example a specific family in Archimedean class, with �α the parameter vector for the
copulas. Suppose we have a data set X={xt

1, . . . , x
t
n}, t = 1, . . . , T , where T is the number

of observations for each variable.
We can then apply parametric copula function using its density to establish the Likeli-

hood function and further obtain the log-likelihood function as

l[ϑ] =
T∑

t=1

ln c(F1(xt
1;ϑ1), . . . , Fn(xt

n;ϑn); �α) +
T∑

t=1

n∑
i=1

fi(xt
i;ϑi)

where c(·) is the copulas density function, and ϑ is the set of parameters for the marginal
distribution functions. We then obtain the estimated ϑ̂ and �̂α that maximizes l[ϑ], and thus
obtain the estimated copula function.

Canonical Maximum Likelihood (CML). Unlike the MLE, CML assumes that the
copulas follows a parametric form, but the marginal distributions do not. This first requires
the empirical distribution function for each variable, F̂Xi(xi), i = 1, . . . , n; however, this can
usually be accomplished using a large data set that is completely different from that used
to fit the copulas model. The empirical distributions, F̂Xi(xi), are then used to transform
all observations T into a set of uniform variates, {ût

1, . . . , û
t
n} where ût

i = F̂i(xt
i). This is

finally used to construct the log-likelihood function

l[�α] =
T∑

t=1

ln c[ût
1, ..., û

t
n; �α]
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for which the parameter vector �̂α can be determined to maximize the above function.

2.2.2 Nonparametric Estimation

Now we assume that neither the copula nor the marginal distributions are of parametric
form. Deheuvels (1979) introduced an empirical copula for this purpose. Suppose we
have a data set of T observations from a n−variate distribution, say Xt

j , j = 1, . . . , n; t =

1, . . . , T . First, we order the observations {x(t)
1 , . . . , x

(t)
n } and obtain the corresponding rank

set {rt
1, . . . , r

t
n}, where rt

j is the number of observations in Xj which is less than or equal to
xt

j. The empirical copulas is estimated as:

Ĉ[
t1
T

, . . . ,
tn
T

] =
1
T

T∑
t=1

n∏
j=1

i(rt
j ≤ tj) (3)

where tp ∈ {0, . . . , T }, and i(·) represents the indicator function:

i(rt
j ≤ tj) =

{
1, if rt

j ≤ tj
0, otherwise

(4)

2.3 Model Selection

While the previous section discussed several ways to estimate the copulas function, this
section focuses on the selection of the most suitable model to adequately fit the data.

Parametric Model. Given the large number of families that belong to the Archimedean
class and its corresponding flexibility to address most problems, let’s consider model selec-
tion under this type of copulas. For the purpose of simplification, we suppose a bivariate
distribution with variables {X1,X2} has an Archimedean copulas with generator φ(.), Gen-
est and Rivest (1993) defined a function [4]:

Kφ(z) = z − φ(z)
φ′(z)

(5)

where φ′(·) is the first derivative of φ(·) and z is a value within [0,1]. A non parametric
estimate of K is given by

K̂(z) =
1
T

T∑
t=1

i[vs ≤ z] (6)

where i(·) represents an indicator function, and vs = 1
T−1

∑T
t=1 I[xt

1 < xs
1, x

t
2 < xs

2], s =
1, . . . , T .

Frees and Valdez(1998) suggest a Q-Q plot between Kφ(z) and K̂(z) which will con-
centrates on the 45o line if the model fits the data well. We can perform a parametric
estimation for each possible family of the Archimedean class and select the most suitable
family by employing this method of selection.
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3 Application

In order to experiment and evaluate the usefulness of copulas functions, a number of multi-
variate cases are examined. Specifically, the analytical cases of Gaussianity and lognormality
are tested. Further application to a real nickel laterite data set are evaluated. Both the
non-parametric estimation approach and the parametric approach using an Archimedean
copulas are applied.

Only three of the many possible families for an Archimedean Copulas is evaluated:
Clayton, Gumbel and Frank. These tend to be fairly popular families, with widespread
applicability. Choosing a suitable model requires selecting the family that yields results
closest to the 45o.

3.1 Analytical Case: Bivariate Gaussian Distribution

Consider the case of a bivariate Gaussian distribution with standard normal marginals and
a correlation coefficient of ρ = 0.7. This is perhaps the most straightforward case. The
analytical form of the multivariate distribution is known and the copulas estimation can be
tested against this reference. The analytical form of the joint pdf is given by

f(x, y) =
1

2πσXσY

√
1 − ρ2

exp

[
− 1

1 − ρ2
{(x − μX)2

2σ2
X

+
(y − μY )2

2σ2
Y

− ρ
(x − μX)(y − μY )

σXσY
}
]

which is further simplified in the standard Gaussian case as

f(x, y) =
1

2π
√

1 − ρ2
exp[−x2 + y2 − 2ρxy

2(1 − ρ2)
]

The joint cdf is then given by a numerical integration of the joint pdf:

F (xi, yj) =
∫ xi

−∞

∫ yj

−∞
f(x, y)dxdy

=
i∑

s=1

j∑
t=1

f(xs, yt)

where i, j = 1 . . . , ndisc and ndisc is the number of discretizations of the bivariate space.

Empirical Approach. Inference of a copulas function is tested by first generating a
sample of 100 pairs of data from a bivariate standard Gaussian number with correlation
ρ = 0.7. This data set is used to estimate the joint cdf by constructing the copulas function
using Equation 3:

F̂ (xi, yj) = Ĉ[FX(xi), FY (yj)]

where FX(x) and FY (y) are the marginal cdf for X and Y , respectively.
Figure 3 shows the results of this comparison. The probability contours of reference

and estimated joint distribution are similar; however, a close examination of the difference
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in the two joint probabilities show a central region of overestimation by the estimated
cdf. The crossplot between these two distributions clearly shows that this overestimation
is systematic; the histogram of errors also confirms this observation. Further, the contour
of differences shows an apparent banding that is likely due to the discretization of the 2D
plane. Figure 4 shows the 3D visualization of the reference and estimated cdf.

Archimedean Copulas. This same analytical case is also evaluated using an Archimedean
copulas, testing the Clayton, Gumbel and Frank families. Given the model selection cri-
teria, the Clayton family was chosen with an α of 1.425. Table 1 gives a summary of the
results of comparing all three families.

Figure 5 shows the results from an Archimedean copulas. A visual inspection of the 2D
plot of the probability contours shows similar contours. Similar to Figure 3, the 2D plot
of errors also shows that there is a large region near the middle of the distribution ranges
that are consistently overestimated by the copulas function. This is further confirmed by
the histogram of errors which clearly shows this bias in overestimation.

There are some differences between the empirical and Archimedean results. Unlike the
empirical approach, no banding is apparent using the Archimedean copulas. Note further
that the magnitude of the units in the histogram of errors is quite different; the units based
on an empirical copulas reflect the accuracy of the estimate, which are directly related to
the number of data used in estimation.

3.2 Analytical Case: Bivariate Log-Normal Distribution

Consider now another analytical case of the bivariate lognormal distribution. This case is
particularly interesting because most real data distributions appear to be lognormal with
long tails for extreme values, yet working with this analytical case permits us to evaluate
the accuracy of the copulas funtion estimation.

For this example, consider a bivariate lognormal distribution both marginal distributions
have a mean and standard deviation of 4 and 0.5, respectively, and the bivariate correlation
coefficient is ρ = 0.5. This yields marginal distributions with values that range from 0
(exclusive) to approximately 270. This range of values is then partitioned into 100 classes
for each marginal distribution.

Similar to the previous case, we can construct the reference joint distribution simply by
using the following analytical relationship for the joint pdf:

f(x, y) =
exp[− 1

1−ρ2 { (log x−μlog X)2

2(σlog X)2 + (log y−μlog Y )2

2(σlog Y )2 − ρ
(log x−μlog X)(log y−μlog Y )

σlog Xσlog Y
}]

2πxyσlog Xσlog Y

√
1 − ρ2

And as before, we can use numerical integration to determine the reference joint cdf over
the 100x100 partitioned classes.

Empirical Approach. To begin inference of the joint distribution using a copulas ap-
proach, we first require some sample data from this bivariate lognormal distribution (say
100 sampled values using Monte Carlo simulation). Once again, Equation 3 is used to
calculate an experimental copulas function to approximate the joint cdf.
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Figure 3: Comparison of reference and estimated joint distribution for a bivariate normal dis-
tribution using an empirical copulas: 2D probability contours(top row) of the reference (left) and
estimated (right) joint distribution; crossplot of joint distributions and planar distribution of errors
(middle row); histogram of squared error and errors (bottom row, left and right, respectively).
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Figure 4: 3-dimensional surface plots of reference (left) and estimated (right) joint cdf for bivariate
Gaussian case.

Inference of the copulas function yields the comparative plots shown in Figure 6. Sim-
ilar to the Gaussian case, this 2D field of errors also shows an interesting artefact of the
partitioning of the data field. Although in this case, we can see regions of over and under
estimation. Overall, the empirical copulas yields an estimated joint cdf that underestimates
the reference joint cdf; however, this underestimation does not appear to be systematic like
that found in the Gaussian case.

Archimedean Copulas. For this lognormal case, the three Archimedean families were
also evaluated, and once again, the Clayton family is chosen, but this time with an alpha
of 1.00. Figure 7 shows the performance of the Clayton family in estimating the bivariate
frequencies. The 2D distribution of errors shows only two areas of minor under or over-
estimation, both in the lower left quadrant. In fact, the match reveals a correlation of 1.00
when the bivariate frequencies are cross plotted. Moreover, the histogram of errors is fairly
well balanced about zero error with a significant spike at zero. Overall, the Archimedean
copulas shows tremendously encouraging results for the lognormal scenario.

3.3 Real Data: Nickel Laterite Data

Now let’s consider a real nickel laterite data set with Nickle (Ni) nd Iron(Fe) with over 9000
pairs of data. The main difference in this case is that we do not have any analytical formula
for either the marginal or the joint density functions.

First, we need to determine the marginal distributions for both Ni and Fe, denoted as
F̃Ni(xi) and F̃Fe(yi) respectively, for any given pair of values (xi, yi). Here the following
formula can be applied:

F̃Ni(xi) =
1
T

n∑
t=1

i(x̃t ≤ xi) and F̃Fe(yi) =
1
T

n∑
t=1

i(ỹt ≤ yi).

where T is the total number of observations in our data set, and (x̃i, ỹi), i = 1, . . . , T is the
set of observed values for (x, y) in the data.

As for the reference joint distribution,F̃XY (xi, yi), we can adopt the following method:

F̃XY (xi, yi) =
1
T

T∑
t=1

i(x̃t ≤ xi, ỹt ≤ yi)
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Figure 5: Comparison of reference and estimated joint distribution for a bivariate normal distri-
bution using an Archimedean copulas: 2D probability contours(top row) of the reference (left) and
estimated (right) joint distribution; crossplot of joint distributions and planar distribution of errors
(middle row); histogram of squared error and errors (bottom row, left and right, respectively).
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Figure 6: Comparison of reference and estimated joint distribution for a bivariate lognormal dis-
tribution using an empirical copulas: 2D probability contours(top row) of the reference (left) and
estimated (right) joint distribution; crossplot of joint distributions and planar distribution of errors
(middle row); histogram of squared error and errors (bottom row, left and right, respectively).
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Figure 7: Comparison of reference and estimated joint distribution for a bivariate lognormal distri-
bution using an Archimedean copulas: 2D probability contours(top row) of the reference (left) and
estimated (right) joint distribution; crossplot of joint distributions and planar distribution of errors
(middle row); histogram of squared error and errors (bottom row, left and right, respectively).
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Empirical Approach. For this particular example, we use the full data set to infer the
marginal distributions of Ni and Fe since the copulas approach assumes that these are
already known. Estimation of the copulas function, however, will be based on a drawing of
100 data pairs of Ni and Fe, as we did for the analytical cases. The data lies within a range
(0, 5.6) for Ni and (0, 55) for Fe. Similar to the previous cases, we partition each range
of the marginal distributions into 100 classes and evaluate the approximated and reference
joint cdf over the 100x100 partitioned classes where the approximated joint cdf, F̂XY (xi, yi)
is calculated by

F̂XY (xi, yj) = Ĉ[F̃Ni(xi), F̃Fe(yj)]

with Ĉ(·) representing the empirical copulas.
Figure 8 shows the output of our analysis. Again, we see that the cross plot of the refer-

ence and the estimated joint cdf form a 45o line, suggesting almost perfect linear correlation.
A comparison of the probability contours also confirm this good correlation; the 2D plot
of the differences reveals significant banding due to discretization of the 2D space. A look
at the histogram of errors shows that more than 75% of the region is underestimated by
the empirical copulas. Despite this, the squared difference between estimated and reference
joint cdf are small and that overall, these results suggests that the empirical copulas method
works well in the Ni-Fe case.

Archimedean Approach. Evaluation of the three families reveals (yet again) that a
choice of the Clayton family with an α of 1.00 yields the smallest sum of squared errors
between Kφ(z) and K̂φ(z). Figure 9 shows the output for this Ni-Fe data set. A comparison
of the 2D plot of probability contours does not reveal large differences; however, the 2D
plot of errors shows that the Archimedean copulas overestimates the reference bivariate
frequencies. This overestimation, however, occurs only in a small portion of the field (near
the centre of the lower left quadrant). Overall, the crossplot shows very good correlation
between the reference and the estimate, and the Archimedean copulas can be said to fit the
data well.

4 Discussion

In all three cases, the Archimedean and empirical copulas performed quite well; however,
the latter clearly shows a banding effect that is not apparent in the parametric Archimedean
approach. Table 1 shows a comparison of the Archimedean and Empirical copulas approach.
The quantitative measure used to select a suitable copulas family is the sum of squared errors
in the K function (SSK) as defined by Genest and Rivest (1993). The lower value indicates
the best match between the estimated and reference Kφ(z).

The sum of squared errors (SSE) for the Archimedean and empirical approach shows
the performance of each approach in inferring the reference bivariate distribution using the
copulas-derived bivariate distribution. In all cases, the Archimedean performed better in
matching the reference. This is not entirely unexpected, given that the Archimedean and
the data in the first two cases correspond to parametric distributions. In the real data case
of Ni-Fe, the banding artefact due to few data pairs to infer the empirical copulas function
already makes the Archimedean a favourable alternative.
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Figure 8: Comparison of reference and estimated joint distribution for the Ni-Fe data set using an
empirical copulas: 2D probability contours(top row) of the reference (left) and estimated (right) joint
distribution; crossplot of joint distributions and 2D distribution of errors (middle row); histogram
of squared error and errors (bottom row, left and right, respectively).
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Figure 9: Comparison of reference and estimated joint distribution for Ni-Fe data set under
Archimedean copulas: 2D probability contours(top row) of the reference (left) and estimated (right)
joint distribution; crossplot of joint distributions and planar distribution of errors (middle row);
histogram of squared error and errors (bottom row, left and right, respectively).
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Case Study
Archimedean Empirical

Clayton Gumbel Frank Choice SSE SSE
α SSK α SSK α SSK

Normal 1.425 0.263 1.0 2.625 5.850 10.007 Clayton 9.103 11.869
logNormal 1.0 0.0999 1.0 1.154 2.663 3.597 Clayton 0.240 0.850

Ni-Fe 1.0 0.185 1.0 0.444 0.9999 0.964 Clayton 0.6666 1.519

Table 1: Summary of results for Archimedean copulas and Empirical copulas. Note that SSE is the
sum of squared errors between the reference and estimated distributions, for the Empirical copula
and the chosen Archimedean Copulas; and SSK =

∑
(Kφ(z) − K̂φ(z))2.

This required sample size for reliable inference of the empirical copulas function is an
issue. The larger the sample size, such as 50 or 100 data pairs or more, the better the
method works. However, large sample sizes may not be practical for real data and may
cause accuracy issues in the estimation. The sample size is directly related to the number
of quantiles that can be estimated; the fewer the samples, the more coarse the estimation
of the distribution function. For example, a sample size of 10 data pairs will only permit
estimation of the deciles of the joint cdf, while a sample size of 100 data pairs will permit
estimation of the percentiles of the joint cdf. Figure 10 shows the effect of sample size on
the accuracy of the empirical copulas in inferring the joint cdf. Despite the high correlations
in all cases, it is clear that a larger sample size yields more accurate results.

5 Proposed Application in Direct Sequential Cosimulation

While the objective of this paper is to understand the construction and performance of copu-
las functions in multivariate distribution inference, the ultimate goal remains a multivariate
direct sequential simulation methodology. In the previous sections, we have seen that a cop-
ulas function requires us to know the univariate marginal distributions corresponding to the
multivariate distribution we are trying to infer. Several authors have already tackled the
problem of univariate distribution inference [13, 20]. We can now apply copulas functions to
take these results one step further and determine the conditional multivariate distribution.
This presents an alternative to the multivariate scaling approach proposed in CCG Report
4 [7]. The implementation in a direct sequential cosimulation approach consists of:

1. Pick a random path visiting all locations.

2. At each location:

(a) Search for all nearby data of different types and/or scale and previously simulated
nodes.

(b) Perform simultaneous cokriging (collocated or full) to determine the parameters
corresponding to the conditional univariate distribution for each variable.

(c) Using the cokriged parameters, determine the conditional univariate distribution
for each variable using the approach proposed by Oz et. al. [13].
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Figure 10: Accuracy of empirical copulas function in estimating joint cdf using different sample
sizes: 10 (top left), 20 (top right), 50 (bottom left) and 100 (bottom right) data pairs.

(d) Determine a non-standard multivariate distribution via copulas functions, using
both the empirical and Archimedean copulas function, and select the appropriate
function based on SSE.

(e) Draw from the multivariate cdf in a stepwise manner:

i. Draw a simulated value y1 from the conditional marginal distribution of
Y1(y1).

ii. From the conditional multivariate distribution determined in Step 2d, de-
termine the conditional univariate distribution of Y2(y2) given Y1 = y1,
fY2|Y1

= y1. Draw y2 from this conditional marginal distribution.
iii. If p > 2, then repeat repeat previous step with successively higher condi-

tioning.

(f) Proceed to next node.

6 Future Work

Copulas theory presents a promising area of research for multivariate geostatistical simula-
tion. The results presented in this report are interesting and show that copulas functions
are quite flexible with both the parametric and non-parametric data. Further, implementa-
tion of the various models provides a subroutine for a future direct sequential cosimulation
dscosim algorithm. This dscosim program will be developed to permit the choice of a
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multivariate scaling or a copulas function approach for multivariate distribution inference.
This will permit further testing of both approaches, and the robustness of each method can
then be evaluated and compared.
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gence des types extrèmes. Pub. l’Institut de Statist. l’Université de Paris, 3(23):1–36,
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Appendix A: Notation

The following notation is adopted for this paper:

� cdf, F : cumulative distribution function,

� jcdf, FX1 , . . . , FXn: joint comulative distribution function, in bivariate or multivariate
distribution

� FXi : marginal CDF for the ith variable in bivariate or multivariate distribution

� pdf, f : probability density function

� jpdf, f : joint probability density function, in bivariate or multivariate distribution

� fXi : marginal PDF for the ith variable in bivariate or multivariate distribution

� Range(G): the range of a function G

� RV: random variable

� X (upper case letter, except otherwise defined): notation for a random variable or a
function

� x (lowercase letter, except otherwise defined): a real number, a particular outcome of
RV X

� I: interval [0, 1]

� R: real number, interval [−∞,+∞]

� u, �α (bold lowercase letter or arrow over a letter): notations for a vector

� X (bold uppercase letter, except otherwise defined ): notation of a matrix

� C: notation for a copula function

� c: notation for the density function of a copula
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Appendix B: Program Code Description

All the numeric calculations in this paper are carried out by a fortran program called
copulas. In this program, we allow two options: 1) Approximating the joint cdf value for a
given pair of (x, y); and 2) Carry out a bin test, in which the given intervals of variable X,
Y are separated into a given number of sub-intervals and approximate the joint cdf value
for each possible pair of separating point (x, y). All the above approximations are based on
a given set of sample values (x̃i, ỹi).

In the current program, we can compare the approximated joint cdf (using Empirical
Copula or Archimedean copula) with three types of reference distributions:

� Bivariate Gaussian Distribution;

� Bivariate LogNormal Distribution;

� Non Parametric Sample Distribution with the joint CDF F̃ (x, y) defined as

F̃ (x, y) =
1
T

T∑
i=1

i[x̃i ≤ x, ỹi ≤ y]

where T is the number of observation.

Similar to GSLIB, this program requires a parameter file (see Figure 13) which requires
the following information:

� Name of the sample data file

� Name of the output data file

� Parameters for either the bivariate Gaussian or bivariate log-Normal distribution

� Interval and number of subintervals in the bin test

� Model selection choice for the Archimedean family: automatic determination or user
specified model

The flowcharts in Figures 11 and 12 provides an overview of the detailed steps of the
program.
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Figure 11: General flowchart for the copula program.
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Figure 12: Sub-flowchart for Archimedean Model construction and selection.
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Parameters for COPULAS
**********************

START OF PARAMETERS:
binorm.txt - data file 1
2 - columns for variable 1 and 2
1 - type of ref dist (1=non-par,2=biGauss,3=bi logN)
copulas.out - file for bin test output

PARAMETERS FOR REFERENCE DISTRIBUTION (biGauss and Bi logN):
0.7 - correlation coefficient 0
1.0 - mean, std dev of Var 1 0
1.0 - mean, std dev of Var 2

BIN TEST:
-3.0 3.0 - min and max of Var 1
-3.0 3.0 - min and max of Var 2
100 - number of subintervals

ARCHIMEDEAN FAMILIES:
1 - Model (0=auto,1=Clayton,2=Gumbel,3=Frank)

Figure 13: Parameters for copulas.
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